15012470112

秉匠心質造,驅動民族工業

18年專注控制電機設計及研發

banner banner

資訊共享層層質檢,嚴格把關,讓中國品質電機走向世界

步進電機驅動控制系統概述以及步進電機驅動的原理
2022-04-15  |   文章出處:漢德保  |   人氣:317

步進電機驅動控制系統概述以及步進電機驅動的原理

步進電機是一種將電脈沖信號轉換為角位移的執行機構。其主要優點是有較高的定位精度,無位置累積誤差;特有的開環運行機制,與閉環控制系統相比降低了系統成本,提高了可靠性,在數控領域得到了廣泛的應用。但是,步進電機在低速運行時的振動、噪聲大,在步進電機的自然振蕩頻率附近運行時易產生共振,且輸出轉矩隨著步進電機的轉速升高而下降,這些缺點限制了步進電機的應用范圍。步進電機的性能在很大程度上取決于所用的驅動器,改善驅動器的性能,可以顯著地提高步進電機的性能,因此研制高性能的步進電機驅動器是一項普遍關注的課題。

1 步進電機驅動控制系統概述

      通常情況下,步進電機驅動系統由3部分構成:

①控制電路。用于產生脈沖,控制電機的速度和轉向。

②驅動電路。即本文的研究內容,由圖1所示的脈沖信號分配和功率驅動電路組成。根據控制器輸入的脈沖和方向信號,為步進電機各繞組提供正確的通電順序,以及電機需要的高電壓、大電流;同時提供各種保護措施,比如過流、過熱等。

步進電機??刂菩盘柦涷寗悠鞣糯蠛篁寗硬竭M電機,帶動負載。

2 步進電機驅動方法的比較

2.1 恒電壓驅動方式

2.1.1 單電壓驅動

      單電壓驅動是指在電機繞組工作過程中,只用一個方向電壓對繞組供電。L為電機繞組,VCC為電源。當輸入信號In為高電平時,提供足夠大的基極電流使三極管T處于飽和狀態,若忽略其飽和壓降,則電源電壓全部作用在電機繞組上。當In為低電平時,三極管截止,繞組無電流通過。

      為使通電時繞組電流迅速達到預設電流,串入電阻Rc;為防止關斷T時繞組電流變化率太大,而產生很大的反電勢將T擊穿,在繞組的兩端并聯一個二極管D和電阻Rd,為繞組電流提供一個泄放回路,也稱“續流回路”。

      單電壓功率驅動電路的優點是電路結構簡單、元件少、成本低、可靠性高。但是由于串入電阻后,功耗加大,整個功率驅動電路的效率較低,僅適合于驅動小功率步進電機。

2.1.2 高低壓驅動

      為了使通電時繞組能迅速到達設定電流,關斷時繞組電流迅速衰減為零,同時又具有較高的效率,出現了高低壓驅動方式。

     Th、T1分別為高壓管和低壓管,Vh、V1分別為高低壓電源,Ih、I1分別為高低端的脈沖信號。在導通前沿用高電壓供電來提高電流的前沿上升率,而在前沿過后用低電壓來維持繞組的電流。高低壓驅動可獲得較好的高頻特性,但是由于高壓管的導通時間不變,在低頻時,繞組獲得了過多的能量,容易引起振蕩??赏ㄟ^改變其高壓管導通時間來解決低頻振蕩問題,然而其控制電路較單電壓復雜,可靠性降低,一旦高壓管失控,將會因電流太大損壞電機。

2.2 恒電流斬波驅動方式

2.2.1 自激式恒電流斬波驅動

      自激式恒電流斬波驅動框圖。把步進電機繞組電流值轉化為一定比例的電壓,與D/A轉換器輸出的預設值進行比較,控制功率管的開關,從而達到控制繞組相電流的目的。從理論上講,自激式恒電流斬波驅動可以將電機繞組的電流控制在某一恒定值。但由于斬波頻率是可變的,會使繞組激起很高的浪涌電壓,因而對控制電路產生很大的干擾,容易產生振蕩,可靠性大大降低。

2.2.2 它激式恒電流斬波驅動

      為了解決自激式斬波頻率可變引起的浪涌電壓問題,可在D觸發器加一個固定頻率的時鐘。這樣基本上能解決振蕩問題,但仍然存在一些問題。比如:當比較器輸出的導通脈沖剛好介于D觸發器的2個時鐘上升沿之間時,該控制信號將丟失,一般可通過加大D觸發器時鐘頻率解決。

2.3 細分驅動方式

      這是本文討論的重點,也是該系統采用的驅動方法。細分驅動最主要的優點是步距角變小,分辨率提高,且提高了電機的定位精度、啟動性能和高頻輸出轉矩;其次,減弱或消除了步進電機的低頻振動,降低了步進電機在共振區工作的幾率??梢哉f細分驅動技術是步進電動機驅動與控制技術的一個飛躍。

      細分驅動是指在每次脈沖切換時,不是將繞組的全部電流通入或切除,而是只改變相應繞組中電流的一部分,電動機的合成磁勢也只旋轉步距角的一部分。細分驅動時,繞組電流不是一個方波而是階梯波,額定電流是臺階式的投入或切除。比如:電流分成n個臺階,轉子則需要n次才轉過一個步距角,即n細分。

      一般的細分方法只改變某一相的電流,另一相電流保持不變。如圖5所示,在O°~45°,Ia保持不變,Ib由O逐級變大;在45°~90°,Ib保持不變,Ia由額定值逐級變為0。該方法的優點是控制較為簡單,在硬件上容易實現;但由圖6所示的電流矢量合成圖可知,所合成的矢量幅值是不斷變化的,輸出力矩也跟著不斷變化,從而引起滯后角的不斷變化。當細分數很大、微步距角非常小時,滯后角變化的差值已大于所要求細分的微步距角,使得細分實際上失去了意義。

      這就是目前常用的細分方法的缺陷,那么有沒有一種方法讓矢量角度變化時同時保持幅值不變呢?由上面分析可知,只改變單一相電流是不可能的,那么同時改變兩相電流呢?即Ia、Ib以某一數學關系同時變化,保證變化過程中合成矢量幅值始終不變?;诖?,本文建立一種“額定電流可調的等角度恒力矩細分”驅動方法,以消除力距不斷變化引起滯后角的問題。如圖7所示,隨著A、B兩相相電流Ia、Ib的合成矢量角度不斷變化,其幅值始終為圓的半徑。 

      下面介紹合成矢量幅值保持不變的數學模型:當Ia=Im·cosx,Ib=Im·sinx時(式中Im為電流額定值,Ia、Ib為實際的相電流,x由細分數決定),其合成矢量始終為圓的半徑,即恒力距。

      等角度是指合成的力臂每次旋轉的角度一樣。額定電流可調是指可滿足各種系列電機的要求。例如,86系列電機的額定電流為6~8 A,而57系列電機一般不超過6 A,驅動器有各種檔位電流可供選擇。細分為對額定電流的細分。

      為實現“額定電流可調的等角度恒力距”,理論上只要各相相電流能夠滿足以上的數學模型即可。這就要求電流控制精度非常高,不然Ia、Ib所合成的矢量角將出現偏差,即各步步距角不等,細分也失去了意義。下面給出了基于該驅動方法的驅動器的設計方案。

3 二相步進電機驅動器的總體設計方案

3.1 系統設計框圖

      單片機根據收到的脈沖信號進行脈沖信號分配,確定各相通電順序,并與CPLD里面的D觸發器相連;同時根據用戶設定的電流值和細分數通過SPI口與D/A轉換器AD5623通信,得到設定的電流值(實際上是電流對應的電壓值)。

      AD5623輸出的值為期望的電流對應的電壓值,它必須與從功率模塊檢測得到的電流對應的電壓值進行比較,并把比較結果與CPLD里面的D觸發器CLR引腳相連。

      CPLD與電流、細分設定的撥碼開關相連,把得到的值通過SPI口傳給單片機;以D觸發器為核心的控制邏輯,根據單片機的各相通電順序和比較器MAX907的比較結果確定各功率管的開關。

      功率驅動模塊直接與電機相連,驅動電機。采用8個MOS管IRF740構成2個H橋雙極型驅動電路。IRF740最高可承受400 V電壓和10 A電流,開關轉換時間不會超過51 ns,管子導通電壓Vgs的取值范圍為4~20 V。

3.2 細分關鍵技術方案

      “額定電流可調的等角度恒力矩細分”驅動方法的實質是恒流控制,關鍵是電流的精確控制,必須同時滿足以下各個條件:

①D/A轉換器輸出的電流值必須與期望值相當接近,而且轉換速度要快。該系統采用ADI公司的AD5623,12位精度,分成4 096個等級,滿足了200細分的高精度要求;2路D/A輸出滿足兩相的要求;SPI口通信,頻率高達50 MHz,建立時間快,同時單電壓供電,連接簡單。

②檢測到的電流必須能正確地反映此時的相電流。由于電機的相電流通常很大,電壓很高,檢測有一定的難度。常用的檢測方法有外接標準小電阻,電路簡單,但干擾比較大,準確性比較差;霍爾傳感器檢測準確,干擾小,連接也不復雜,所以該驅動器采用霍爾傳感器。

③比較器分辨率要高,轉換速度快。MAX907的建立時間只需12 ns,比較的電壓只要相差2 mV即可檢測出來(最大不超過4 mV),反應非常靈敏。

④控制功率管開關的邏輯電路要有很高的實時性,保證相電流在設定電流上下做很小的波動,以免引起浪涌,干擾控制電路。

      本文采用Xilinx公司的CPLD芯片XC9572。以D觸發器為核心的控制電路全部由CPLD完成,CPLD代替了各種分立元器件,結構簡單,連接方便。

      當比較結果為低電平時(檢測到的電流大于設定電流),D觸發器輸出為1,或門輸出高電平,關斷管子,電流變??;當檢測到電流小于設定電流時,管子導通,從而保證相電流在設定電流上下做很小的波動。


上一篇:步進電機的控制電流、控制轉速與負載有沒有關系?

下一篇:二相電機四線、六線、八線的區別

返回列表
k频道国产手机分享视频,欧美人自拍视频在线观看,欧美成人免费高清在线观看,少妇人妻互换久久丝瓜,国产美女福利在线观看,久久精品国产一区二区无码